Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

(Di-2-pyridylamine- $\kappa^{2} N, N^{\prime}$)(naphtha-lene-2,3-diolato- $\kappa^{2} O, O^{\prime}$)palladium(II) monohydrate and (di-2-pyridylamine$\left.\kappa^{2} N, N^{\prime}\right)(3-o x i d o n a p h t h a l e n e-2-c a r-$ boxylato- $\kappa^{2} O, O^{\prime}$)palladium(II)

Yue Wang, ${ }^{\text {a }}$ Yu Mizubayashi, ${ }^{\text {b }}$ Mamiko Odoko ${ }^{\text {b }}$ and Nobuo Okabe ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratory of Inorganic Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China, and ${ }^{\mathbf{b}}$ Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan Correspondence e-mail: okabe@phar.kindai.ac.jp

Received 17 November 2004
Accepted 2 December 2004
Online 15 January 2005
In the title complexes, $\left[\mathrm{Pd}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{2}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O},(\mathrm{I})$, and $\left[\mathrm{Pd}\left(\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{O}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right]$, (II), the $\mathrm{Pd}^{\mathrm{II}}$ centers have a distorted cis-square-planar geometry. In (I), the $\mathrm{Pd}^{\mathrm{II}}$ atom is coordinated to two N atoms of the di-2-pyridylamine (DPA) ligand and two O atoms of the naphthalene-2,3-diolate (ND) dianion. In (II), the $\mathrm{Pd}^{\mathrm{II}}$ atom is coordinated to two N atoms of the DPA ligand, one carboxylate O atom and one oxide O atom from the 3-oxidonaphthalene-2-carboxylate (NC) ligand. The dihedral angle between the planes of the two pyridine rings of DPA in (I) is 16.20 (12) ${ }^{\circ}$ and that in (II) is $29.45(10)^{\circ}$. In (I), the molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to generate centrosymmetric dimers. In (II), molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to generate spirals.

Comment

Di-2-pyridylamine (DPA) is an aromatic amine similar to bipyridine. DPA has three possible conformations when coordinating to metal centers, viz. trans-trans, cis-trans and cis-cis, in which the orientations of the pyridyl N atoms, respectively, are opposite, the reverse of one another and on the same side relative to the orientation of the $\mathrm{N}-\mathrm{H}$ bond at the central linking N atom (Du et al., 2003). The two pyridine rings of the DPA molecule are bridged by the NH group; the molecule is flexible and the two rings can adopt either coplanar or non-planar conformations in the coordination to the metal centers (Bolm et al., 2004; Youngme et al., 2003; Du et al., 2003; Romeo et al., 1998).

Many $\mathrm{Pt}^{\mathrm{II}}$ and $\mathrm{Pd}^{\mathrm{II}}$ complexes with various kinds of ligands have been widely studied in relation to their cytotoxic activity, because they are usually isostructural (Barnham et al., 1995). $\mathrm{Pt}^{\mathrm{II}}$ and $\mathrm{Pd}^{\mathrm{II}}$ complexes of DPA bind to DNA and also have
cytotoxic activity. The mode of binding between the complexes and DNA appears to be non-covalent groove binding or intercalation, and the NH group of DPA appears to play an important role for the interactions (Tu et al., 2003; Paul et al., 1993). DNA intercalation has been considered as an important mode of non-covalent interaction of heterocyclic compounds with DNA (Lerman, 1961), and the intercalation of homologous square-planar $\mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{II}}$ complexes with bipyridine or biquinoline has been suggested (Cusumano \& Giannetto, 1997). Although the molecular structures of a few $\mathrm{Pt}^{\mathrm{II}}$ complexes of DPA have been reported (Romeo et al., 1998; Paul et al., 1993; Tu et al., 2004), little is known about the $\mathrm{Pd}^{\mathrm{II}}$ complex of DPA.

(II)

In this study, we have prepared two cis-coordinated ternary $\mathrm{Pd}^{\mathrm{II}}$ complexes with DPA and other planar ligands, naph-thalene-2,3-diolate (ND), $[\mathrm{Pd}(\mathrm{DPA})(\mathrm{ND})] \cdot \mathrm{H}_{2} \mathrm{O},(\mathrm{I})$, and 3-ox-idonaphthalene-2-carboxylate (NC), $[\operatorname{Pd}(\mathrm{DPA})(\mathrm{NC})]$, (II), and determined their structures. The present study is the first determination of the crystal structures of $\mathrm{Pd}^{\mathrm{II}}$ complexes with DPA.

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of (I), showing the atomic numbering scheme. Displacement ellipsoids for non-H atoms are shown at the 50% probability level.

The structure of complex (I) is shown in Fig. 1 and selected geometric parameters are listed in Table 1. DPA adopts a trans-trans conformation. The coordination around the $\mathrm{Pd}^{\mathrm{II}}$ ion is distorted cis-square-planar, and the $\mathrm{Pd}^{\mathrm{II}}$ ion is coordinated by two N atoms from the bidentate DPA ligand and two O atoms from the bidentate ND ligand. In the square-planar coordination, atoms Pd1, O1, O2, N1 and N2 deviate by $0.0001(2), 0.0242(15),-0.0306(16), 0.0332(18)$ and $-0.0407(18) \AA$, respectively, from the mean plane through these five atoms. The $\mathrm{Pd}-\mathrm{O}$ distances are slightly longer than the analogous ternary $\mathrm{Pd}^{\mathrm{II}}$ complexes with the heterocyclic 2,2'-bipyridine (BPY) and NC ligands, viz. [$\mathrm{Pd}(\mathrm{BPY})(\mathrm{NC})]$

Figure 2
An ORTEP-3 (Farrugia, 1997) drawing of (II), showing the atomic numbering scheme. Displacement ellipsoids for non-H atoms are shown at the 50% probability level.

Figure 3
The packing of (I), showing centrosymmetric dimers and the weak C $\mathrm{H} \cdots \pi$ interactions (dashed lines). [Symmetry codes: $(*)-x,-y, 1-z$; (\#) $\frac{1}{2}+x, \frac{1}{2}-y, z$.]
[1.981 (3)-1.984 (2) Å], or with biquinoline (BQ) and NC, viz. $[\mathrm{Pd}(\mathrm{BQ})(\mathrm{NC})][1.982$ (4)-1.992 (4) Å; Okabe et al., 2004].

In the coordination environment of the Pd atom, the largest angular deviation is that for $\mathrm{O} 1-\mathrm{Pd} 1-\mathrm{O} 2$; the other angles around the Pd atom are similar. The dihedral angle between the two pyridyl rings of DPA is $16.20(12)^{\circ}$, indicating that the two DPA pyridine rings are nearly coplanar. A six-membered chelate ring, Pd1/N1/C12/N3/C22/N2, and a five-membered ring, $\mathrm{Pd} 1 / \mathrm{O} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{O} 2$, are formed between the $\mathrm{Pd}^{\mathrm{II}}$ ion and the DPA ligand, and between the $\mathrm{Pd}^{\mathrm{II}}$ ion and the ND ligand, respectively. The six-membered chelate ring adopts a boat conformation in which atoms Pd1 and N3 are displaced by 0.304 (3) and 0.138 (3) \AA, respectively, from the mean plane through atoms N1, N2, C12 and C22. The angles between the mean ND plane and the two pyridine rings containing atoms N 1 and N 2 are 11.57 (11) and 4.63 (12) ${ }^{\circ}$, respectively, indicating that the ND ligand is nearly coplanar with the DPA ligand.

The structure of complex (II) is shown in Fig. 2 and selected geometric parameters are listed in Table 3. The DPA molecule adopts a distorted trans-trans conformation. The $\mathrm{Pd}^{\mathrm{II}}$ atom has distorted cis-square-planar coordination, and it is bonded to two N atoms of the DPA molecule, one naphthol O atom and one carboxylate O atom of the NC ligand. In the coordination environment around atom Pd1, the largest angular deviation is for $\mathrm{N} 2-\mathrm{Pd} 1-\mathrm{O} 1$. In the square-planar coordination, atoms Pd1, O1, O2, N1 and N2 deviate by -0.0257 (6), 0.0392 (8), -0.0245 (8), 0.0379 (8) and -0.0269 (9) \AA, respectively, from the mean plane through these five atoms. The $\mathrm{Pd}^{\text {II }}$

Figure 4
The packing of (II), with hydrogen bonds indicated by broken lines. [Symmetry codes: (*) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z ;(\#) \frac{1}{2}-x,-\frac{1}{2}+y, \frac{3}{2}-z$.]
ion and DPA molecule form a six-membered chelate ring with a boat conformation, in which atoms Pd1 and N3 are displaced by 0.688 (3) and 0.268 (3) \AA, respectively, from the mean plane through atoms N1, N2, C12 and C22. This boat deformation is larger than that in (I).

The two pyridine rings of the DPA ligand adopt a nonplanar conformation, with a dihedral angle between the pyridine rings of $29.45(10)^{\circ}$, significantly larger than that in (I). A similarly large distortion of the DPA group was also observed in $\left[\mathrm{Cu}(\mathrm{DPA})_{2}\left(\mathrm{~N}_{3}\right)_{2}\right]$ [dihedral angle $=40.9(2)^{\circ}$; Du et al., 2003] and $\left[\mathrm{PtMe}(\mathrm{DPA})\left(\mathrm{Me}_{2} \mathrm{SO}\right)\right] \mathrm{CF}_{3} \mathrm{SO}_{3}$ [dihedral angle $=46.4(1)^{\circ}$].

The distorted conformation of the DPA ligand in (II) may be explained by intramolecular steric hindrance between the N 2 -containing pyridine ring of the DPA ligand and the NC ligand, because the NC ligand with different substituents at the 2- and 3-positions is near the N2-containing pyridine ring by coordinating to the $\mathrm{Pd}^{\mathrm{II}}$ atom. The $\mathrm{O} 1 \cdots \mathrm{H} 26$ and $\mathrm{O} 2 \cdots \mathrm{H} 16$ separations in (II) are 2.40 and $2.46 \AA$, respectively. These values are significantly longer than the corresponding values in (I) $(\mathrm{O} 1-\mathrm{H} 26=2.23 \AA$ and $\mathrm{O} 2-\mathrm{H} 16=2.27 \AA)$. These differences arise from the slightly different conformations of the DPA ligands in (I) and (II), which are presumably a direct result of the different modes of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding and packing in (I) and (II).

In the crystal structure of (I), centrosymmetric dimers are formed by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds (Table 2 and Fig. 3). Between the dimers there is a further weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction involving the $\mathrm{C} 8-\mathrm{H} 8$ group and the centroid, viz. Cg1\#, of the C1-C4/C9/ C10 ring [at $\left(\frac{1}{2}+x, \frac{1}{2}-y, z\right)$] with a H8 $\cdots C g 1$ \# distance of $2.86 \AA$ and a C $8-\mathrm{H} 8 \cdots$ Cg1\# angle of 136°. This interaction leads to the formation of sheets in the [100] plane. The crystal structure of (II) is also stabilized by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, which with an associated $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond generates spirals by the operation of a 2_{1} screw axis along the b direction (Fig. 4 and Table 4).

Experimental

Red prismatic crystals of (I) were obtained by slow evaporation of a dimethylformamide solution of a mixture of 2,3-naphthalenediol, di-2-pyridylamine and $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ (molar ratio 1:1:1) at room temperature. Yellow needle-shaped crystals of (II) were obtained by slow evaporation of a dimethylformamide solution of a mixture of 3-hydroxynaphthalene-2-carboxylic acid, di-2-pyridylamine and Pd $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ (molar ratio 1:1:1) at room temperature.

Compound (I)

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Pd}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{2}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}} \\
& M_{r}=453.77 \\
& \text { Monoclinic, } P 2_{1} / a \\
& a=9.202(9) \AA \\
& b=17.136(16) \AA \\
& c=11.087(9) \AA \\
& \beta=92.53(3)^{\circ} \AA \\
& V=1747(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.792, T_{\text {max }}=0.947$
16994 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.054$
$S=1.05$
3988 reflections
245 parameters
H -atom parameters constrained

$$
\begin{aligned}
& 3988 \text { independent reflections } \\
& 3516 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.021 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-22 \rightarrow 22 \\
& l=-14 \rightarrow 14 \\
& \\
& \\
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0325 P)^{2}\right. \\
\quad+0.2332 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.39 \mathrm{e} \AA^{-3}
\end{array}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Pd} 1-\mathrm{O} 1$	$1.9885(18)$	$\mathrm{Pd} 1-\mathrm{N} 1$	$2.010(2)$
$\mathrm{Pd} 1-\mathrm{O} 2$	$2.0030(19)$	$\mathrm{Pd} 1-\mathrm{N} 2$	$2.019(2)$
O1-Pd1-O2	$83.66(5)$	$\mathrm{O} 1-\mathrm{Pd} 1-\mathrm{N} 2$	$92.21(6)$
$\mathrm{O} 1-\mathrm{Pd} 1-\mathrm{N} 1$	$175.67(5)$	$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{N} 2$	$175.38(5)$
$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{N} 1$	$92.35(6)$	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{N} 2$	$91.83(7)$

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3 $\cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.01	$2.845(4)$	163
O3-H31 \cdots O2	0.91	1.83	$2.726(3)$	165

Symmetry code: (i) $-x,-y, 1-z$.

Compound (II)

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{O}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right]$
$M_{r}=463.76$
Monoclinic, $P 2_{1} / n$
$a=12.168$ (9) \AA
$b=11.500(10) \AA$
$c=13.195(8) \AA$
$\beta=94.94$ (3) ${ }^{\circ}$
$V=1840(2) \AA^{3}$
$Z=4$
$D_{x}=1.675 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 13283
reflections
$\theta=3.1-27.5^{\circ}$
$\mu=1.04 \mathrm{~mm}^{-1}$
$T=296.1 \mathrm{~K}$
Needle, yellow
$0.20 \times 0.20 \times 0.10 \mathrm{~mm}$
Data collection
Rigaku R-AXIS RAPID
14 independent reflections
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.808, T_{\text {max }}=0.901$
18070 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.049$
$S=0.90$
4149 reflections
253 parameters

3016 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-15 \rightarrow 15$
$k=0 \rightarrow 14$
$l=0 \rightarrow 17$

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0273 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.002$
> $\Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$

Table 3
Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right.$) for (II).

Pd1-O1	$1.9600(16)$	Pd1-N2	$2.0084(19)$
Pd1-O2	$1.9938(17)$	Pd1-N1	$2.0165(19)$
O1-Pd1-O2	$92.95(7)$	$\mathrm{O} 1-\mathrm{Pd} 1-\mathrm{N} 1$	$174.61(6)$
$\mathrm{O} 1-\mathrm{Pd} 1-\mathrm{N} 2$	$86.80(8)$	$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{N} 1$	$90.96(7)$
$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{N} 2$	$179.75(6)$	$\mathrm{N} 2-\mathrm{Pd} 1-\mathrm{N} 1$	$89.29(8)$

Table 4
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3 $\cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.01	$2.783(2)$	149
C15-H15 O^{ii}	0.93	2.50	$3.371(4)$	157

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$.

All H atoms, including water H atoms, were located from difference Fourier maps and were then treated as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA, \mathrm{~N}-\mathrm{H}$ distances of 0.86 A and $\mathrm{O}-\mathrm{H}$ distances of 0.90 and $0.91 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N}, \mathrm{O})$. The weighting scheme was optimized.

For both compounds, data collection: RAPID-AUTO (Rigaku, 2003); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004) and CRYSTALS (Watkin et al., 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999) and DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1798). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Barnham, K. J., Bayer, C. J., Djuran, M. I., Mazid, M. A., Rau, T. \& Sadler, P. J. (1995). Inorg. Chem. 34, 2826-2832.

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., de Gelder, R., Israel, R. \& Smith, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bolm, C., Frison, J. C., Le Paih, J., Moessner, C. \& Raabe, G. (2004). J. Organomet. Chem. 689, 3767-3777.
Cusumano, M. \& Giannetto, A. (1997). J. Inorg. Biochem. 65, 137-144.
Du, M., Guo, Y. M., Chen, S. T., Bu, X. H. \& Ribas, J. (2003). Inorg. Chim. Acta, 346, 207-214.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Lerman, L. S. (1961). J. Mol. Biol. 3, 18-30.
Okabe, N., Hagihara, K., Odoko, M. \& Muranishi, Y. (2004). Acta Cryst. C60, m150-m152.
Paul, A. K., Mansuri-Torshizi, H., Srivastava, T. S., Chavan, S. J. \& Chitnis, M. P. (1993). J. Inorg. Biochem. 50, 9-20.

Rigaku (2003). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Romeo, R., Nastasi, N., Scolaro, L. M., Plutino, M. R., Albinati, A. \& Macchioni, A. (1998). Inorg. Chem. 37, 5460-5466.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tu, C., Wu, X. F., Liu, Q., Wang, X. Y., Xu, Q. \& Guo, Z. J. (2004). Inorg. Chim. Acta, 357, 95-102.
Watkin, D. J., Prout, C. K., Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.
Youngme, S., van Albada, G. A., Roubeau, O., Pakawatchai, C., Chaichit, N. \& Reedijk, J. (2003). Inorg. Chim. Acta, 342, 48-58.

